
Embedded Rust 
Anywhere

Cutting the Cord



How we got here
• We build modern 

appliances, starting with 
the June Intelligent oven


• Early software was tied to 
it's host platform and UI 
toolkit


• Next generation of 
appliance software is 
modular, portable, and 
scalable



Choosing Rust
• Considered C or C++ as the obvious performant & portable 

choices.


• Many of our application developers come from Go, Swift, 
Obj-C and Java.


• We weren't eager for the memory management issues and 
unpredictable failure modes C or C++ often bring.


• Though young, Rust offered good guarantees and modern 
syntax.


• After vetting its interoperability story, we were in.



Choosing Rust

• Great cross-compilation support


• Share appliance code with mobile applications


• Configuring a `-sys` crate and build.rs can be easier than 
working with other build systems.


• Explicit control over memory allocation



A Whole New System

• Our first new appliance is an embedded system, no_std


• Vendor board support is in C, and they don't support Rust


• Existing embedded team is comfortable doing board 
bringup in C


• To reduce risk, we brought the system up in C



Divide and conquer

• Divided the system into modules, interfaces defined in C


• Appliance and HMI modules in Rust


• Drivers & HALs in C


• Networking and storage in C


• Module interfaces free of platform-specific types



Divide and conquer

ApplianceHMI

Drivers

HAL

CommAPI 



Divide and conquer
uint8_t appliance_on_message(uint8_t *ptr, uint16_t length);

bool comm_send_status(uint8_t *ptr, uint16_t length);

void hmi_on_action_button_pressed(void);
void hmi_on_appliance_status(appliance_status_t *);
void hmi_update(void);

void hal_set_led(led_t id, led_state_t state, effect_t effect);
void hal_set_display(char *chars, uint8_t symbols, effect_t effect);
void hal_get_temp_data(thermometer_t *thermometer);

uint32_t hal_get_ticks(void);



Device and Simulator

• Appliance and HMI logic is purely cross-platform


• HAL implementation rewritten in the simulator - UI 
widgets in place of hardware


• Device-specific networking and storage code is isolated 
within a submodule, reimplemented in the simulator



Device and Simulator

ApplianceHMI

Drivers

HAL

CommAPI 
Common

Hardware-specific



Device and Simulator
ApplianceHMI-screen

Drivers

HAL

CommAPI 
Common

Hardware-specific

lvgl



Simulator benefits
• Faster than bringup


• Limited hardware


• Simulate hardware I/O


• Simulate network traffic


• Early integration with mobile apps


• Verify tricky hardware edge cases



Sample

HMI/app

Drivers

HAL

API 
Common

Hardware-specific

lvgl



Sample
// Driver module API 
extern void drivers_init(void); 
extern void drivers_set_led(LEDs which, bool on); 
extern bool drivers_is_button_pressed(); 

// HMI module API 
extern void hmi_init(void); 
extern void hmi_update(void); 

// LittlevGL bindings 
lv_disp_drv_register(&displayDriver)



Try it!

• Example repo: github.com/junelife/rust-anywhere


• Targets STM32F429 Discovery board


• Defines API for display, LEDs, and buttons


• Build and run as simulator or on device

https://github.com/junelife/rust-anywhere


Try it!



A Tour of the Sample
• device


• Embedded app based on LittlevGL demo app, written in C


• Provides board bring up and configuration, main application loop


• simulator


• macOS application, written in Swift


• Provides simulated UX and hosts shared logic


• crates


• Rust workspace


• Contains both shared and platform specific code



Rust Workspace
• Top level static libraries


• libdevice, libsimulator


• Common application logic


• api, ffi, lvgl/lvgl-sys, hmi


• Platform specific code


• board, drivers



Debugging the Simulator

• Rust works great with LLDB and GDB debuggers


• Integration with popular IDEs like Visual Studio Code or 
CLion


• Xcode plugin support:


• https://github.com/mtak-/rust-xcode-plugin



Conclusion

• Invaluable to distribute demo software to developers, 
designers, testers, partners


• Isolates device-specific bugs


• Strong module boundaries make it easier to replace 
implementations (C with Rust)


• Appliance crates will be reused on devices with a full OS



Thanks!

• Come visit us at the first Impl day!


• We're hiring! juneoven.com/careers

https://juneoven.com/careers

